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A B S T R A C T

In this paper, we model the recycling process for solid waste as performed in a material recovery facility. The
intent is to inform the design and evaluation of a material recovery facility (MRF) in order to increase its profit,
efficiency and recovery rate. We model the MRF as a multi-stage material separation process and develop a
network flow model that evaluates the performance of the MRF through a system of linear equations. We es-
timate the parameters of the network flow model from historical data to find the best fit. We validate the model
using a case-study of a light-packaging recovery section of an MRF in Spain. Additionally, we examine how
uncertainty in the input material composition propagates through the system, and conduct a sensitivity analysis
on the model parameters.

1. Introduction

Recycling is a major element of integrated solid waste management
(SWM) in developed countries. Recycling of solid waste is a preferred
option relative to landfill and incineration, due to the rapid depletion of
landfill space and air pollution emissions from incineration (Chang and
Pires, 2015). Furthermore, recycling permits the recovery of valuable
raw materials. Consequently, many countries have enacted national and
regional waste legislation that require recycling, such as the Resource
Conservation and Recovery Act which implements the Sustainable
Materials Management Program in the United States (Chang and Pires,
2015). In Spain, the Waste Framework Directive sets a target for Spain
to recycle 50% of its municipal solid waste by 2020 (Milios and Reichel,
2013). A recycling program can differ in its collection method (single,
dual or multi-stream). In this research we consider the collected mu-
nicipal waste, which is processed at a material recovery facility (MRF).
The MRF is a system of mechanical and manual separation processes
that sorts the multi-stream waste to recover recyclable materials. MRFs
in the US and Spain are facing challenges due to volatile scrap market
prices (e.g. for plastic waste (Ragaert et al., 2017)) as well as changing
scrap buyer requirements. The latter challenge stems from China’s
Operation Green Fence. Since 2013, China, a major importer of re-
cyclable waste, turns away recyclable materials that fail to meet stricter
contaminant levels (Gu et al., 2017). Another challenge is the varia-
bility in the composition of the waste streams received by the MRFs. To
address these challenges, it is crucial that MRFs understand how their

operating performance depends on the scrap-market prices and quality
requirements, as well as on the waste input streams. This understanding
can allow the MRFs to examine adaptation strategies in light of the
scrap market dynamics and input variability. In this paper we develop
and test a network flow model for an MRF. The intent of the model is to
provide a tool for predicting the performance of an MRF, and for
showing how this performance depends on the configuration and
parameters of the system, and on the input materials. Potential appli-
cations include cost-benefit analyses of modifications to the design and
operation of an MRF; for instance, these modifications might increase
the recovery or grade of a profitable material.

The material recovery model developed in this paper will contribute
to furthering the development of a circular economy. The model allows
for the determination of the material recovery rate and grade from a
municipal waste input stream, and can be used to identify system im-
provements that both increase the quantity and/or quality of the va-
luable recovered materials, as well as reduce the amount lost to land-
fills. Whereas this model has been developed for a municipal waste
application, it should also apply to other material recovery systems that
use similar separation technologies. For instance, we expect that the
model, with some adaptation, can be applied to the separation step in
the recovery system for end-of-life vehicles, which comes after the
dismantling and shredding steps.
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1.1. Literature review

Solid waste recycling is part of the larger framework of waste
management, which examines the flow of waste from generation in
rural or urban settings to treatment, recovery or disposal. There is an
extensive literature on waste management. In particular, we cite the
research that focuses on decision-making processes, namely capacity-
planning of facilities for treatment and material recovery, routing sys-
tems for waste collection, and resource allocation (Antmann et al.,
2013; Chang et al., 2005; Huang et al., 2005; Shi et al., 2014). Ad-
ditionally, we mention the research that includes environmental con-
siderations. For plastic waste management, Rigamonti et al. (2014) look
at different collection-routing strategies from an energy recovery per-
spective, while Shonfield (2008) carries out a life cycle assessment
(LCA) study of a range of plastic recycling technologies. Gaustad et al.
(2012) examine the environmental and economic impact of various
technologies used for aluminum recycling. Kirkeby et al. (2006) ex-
amine the LCA of material flows using EASEWASTE, a computational
model tool developed for this purpose. Several papers rely on estimated
parameters to characterize the performance of an MRF for a particular
material flow: Kirkeby et al. (2006) introduce mass transfer coefficients,
parameters input by the user to characterize a material’s overall re-
covery; Palmer (1999) and Diaz et al. (1982) use recovery factor
transfer function for each material flow in each unit in an MRF.

Material separation of collected waste is carried out mechanically in
MRFs based on the physical properties of each material. For instance,
aluminum materials are sorted by virtue of their electrical conductivity
using eddy-current separation equipment (Braam et al., 1988;
Schloemann, 1982). Ferrous materials are sorted by magnet separators
in pulley, drum or belt form (UNEP, 2005). Glass and plastic (including
HDPE, PET and Tetrabrik) are separated from other materials by detect-
and-route systems, whereby sensors detect target materials and air jets
divert the localized objects (Stressel, 2012). Sensors using spectroscopic
near-infrared (NIR) imaging have been shown to successfully sort be-
tween different types of plastics after training with statistical pattern
recognition techniques (Van Den Broek et al., 1997). Huang in-
vestigated the use of optical sensors for multi-feature recognition of
different waste mixtures (Huang et al., 2010). MRFs also carry out se-
paration based on particle properties at the start of the system config-
uration: screening, usually done with trommels, separates based on
object size (Stressel, 2012; UNEP, 2005); ballistic separators distinguish
between flat, light items (e.g., paper, films) and heavy, rigid items (e.g.,
containers) based on particle elasticity and aerodynamic properties
(Hershaft, 1972; Testa, 2015). In addition to automated sorting tech-
nologies as described above, manual sorting is also used in some MRFs.
For instance, personnel in sorting stations situated before the trommels
collect large-size objects while those in stations before the final baling
of the plastics and aluminum output streams remove non-valuable
waste (Stressel, 2012; UNEP, 2005).

MRFs sort materials using a sequence of separation processes.
Beyond an understanding of the physical process for each separation
unit, we need to model all the units as a connected network. Modeling
of a network of material separation processes has been carried out in
other fields, most specifically in mineral processing (Mckeon and
Luttrel, 2012; Noble and Luttrell, 2014a,b). These papers use a linear
circuit analysis approach, with the separation function defined for
different separation technologies based on physical properties. In
(Dahmus and Gutowski, 2007; Gutowski et al., 2008, 2007), a similar
approach, called ‘Bayesian separation’, is introduced to define material
separation models from a probabilistic point of view. The probabilities
for correct routing of target material and non-target material are also
defined. Vanegas et al. (2015) use this approach to model the recycling
of LCD TVs.

Several papers have studied the costs and operations of an MRF in
various contexts: Metin et al. estimated the investment and operating
costs of different municipal MRFs in Turkey using city-wide aggregate

data (Metin et al., 2003); Kang and Schoenung examined the cost dri-
vers of an existing e-waste MRF (Kang and Schoenung, 2006); Li et al.
considered how sorting strategies can impact the utilization of scrap in
a secondary aluminum production process. (Li et al., 2011). However,
these papers do not model the material flows through the individual
separation units, but rather assume a given material recovery rate.
There is limited literature concerning the actual design optimization of
the network of separation processes used in MRFs. Wolf (Wolf, 2011;
Wolf et al., 2013), and Testa (Testa, 2015) provide the groundwork for
the development of a network flow model which can represent an MRF
with multiple output units and recirculating streams. In this paper, we
formulate a network flow model for an MRF as done in these prior
works, provide an approach for parameter estimation and present a
case study illustrating the model.

2. Mathematical model

The aim of the mathematical model is to represent the material
separation processes in terms of the mass flow of material in a network
of sorting units that includes recirculation loops. We assume a sta-
tionary flow of input material, and no build-up or buffering of any of
the flows in the MRF.

We model each separation process on a per material basis, with an
empirically-derived separation (or efficiency) parameter which quan-
tifies the fraction of a material sent to each output stream of a sorting
unit. We do not attempt a physical modeling of the sorting units; such
models are rarely available for a whole MRF network (Chang and Pires,
2015). Future work could incorporate the physical parameters of the
sorting unit that determine its separation efficiency (e.g. height of the
magnet, strength of the current) by making the separation efficiency a
function of these physical parameters.

As the building block for the network model, we consider a multi-
output sorting unit that sorts a mixture of M materials into K output
streams. For each material m, we define a mass flow rate of fi

m in the
input stream (e.g., ton per hour) to unit i. The sorting unit will separate
this material input into K output streams. The mass flow in the output
stream k isq fi k

m
i
m

, , where qi k
m
, is the fraction of the input stream of material

m that is sorted into output stream k by unit i.qi k
m
, is called the separation

parameter. Consequently we have ∑ == q 1k
K

i k
m

1 , . Fig. 1 shows the most
common case when there are only K=2 output streams: if unit i sorts
for target material type (m=T), it diverts a fraction of its flow, denoted
by qi j,

T, to target unit j, and diverts qi k
N
, of the flow of non-target material

type(s) (m=N) to non-target unit k. qi j,
Tand qi k,

Nare expected to be
greater than 0.5.

We use this building block to develop the mathematical model for
an MRF. An MRF can be represented as a network of multi-output units,
as shown in Fig. 2. We model the system configuration with three types
of units: a set I of input nodes, a set S of sorting units and a set Z of
output nodes. Each input node feeds an input stream to an initial
sorting unit. The input to each sorting unit can consist of an input
stream from an input node, plus the output streams from other sorting

Fig. 1. Scheme of a multi-output unit sorting an input mixture of target and non-target
materials into 2 streams.
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units. Each sorting unit can generate multiple output streams as de-
scribed above. The input to the output nodes can come from one or
more sorting units. There is no output flow from an output node, as it
represents a collection unit for the MRF (Testa, 2015).

We can write the mass-balance equation for the flow of each ma-
terial through each sorting and output unit j as follows:

∑= +f μ q fj
m

j
m

i
i j
m

i
m

,
(1)

with f q,i
m

i j
m
, defined previously and μj

m being the external input rate of
material m to unit j. We note that =q 0i j

m
, if there is not a direct con-

nection between unit i and j; and we have ≠μ 0j
m only if there is an

input unit that feeds sorting unit j. For each material m, we can write
(1) as a system of linear equations (Testa, 2015):

= +f μ Q f( )m m m T m (2)

f m is the flow vector (Nx1) for material m, with elements fi
m.μ m is

the input vector (Nx1) for material m, with elements μi
m, Qm is the

sorting matrix (NxN) for material m, with elements qi j
m
, . N is the number

of sorting units plus output units.
We can solve the system of linear Eq. (2) to obtain the steady-state

flow rates for each material at each unit:

= − −f I Q μ( ( ) )m m T m1 (3)

We estimate the separation parameters qi j
m
, for each connection in

the MRF configuration from an empirical characterization of measure-
ment samples (an estimation method is covered in section III). The
estimated parameters may depend on the specific input composition,
feed rate, and operational settings used during the measurements. For
this paper, we do not consider the effects of these factors, i.e., we as-
sume that the separation parameters are constant and independent from
these factors (Testa, 2015).

We note that the separation parameters are based solely on the type
of material, as many of the sorting equipment in an MRF operate based
on physical material properties (e.g. magnets sort by ferrous and
magnetic properties, eddy-current separators sort by metallic proper-
ties, NIRs sort by plastics’ optical properties). However, some sorting
units sort by shape and size (e.g., trommels), or by shape and density
(e.g., ballistic separators). Note that the separation parameters qi j

m
, do

not explicitly consider material characteristics other than material type
(e.g., shape, size or density). Testa (2015) demonstrates how to extend
the modeling framework to accommodate sorting units that sort by

Fig. 2. Schematic of LPRS, showing datasets for separation parameter estimation.
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material shape and size.
In addition to mechanical sorting units, MRFs may include manual

operations: hand-sorting (HS) cabins and quality-control (QC) units. In
the hand-sorting cabins, personnel identify and collect valuable mate-
rials from a stream. These cabins can be found anywhere within the
system. Quality-control units are situated immediately upstream of an
output collection unit. At a QC unit, personnel remove contaminant
materials from the stream to improve the grade of the material flow into
the output collection unit. More information about how we model
manual stations can be found in Appendix A.

3. Model parameter estimation

In this section, we show how to use data from an existing MRF to
estimate the separation parameters required in the computational
model. Alternatively, one might obtain the separation parameters di-
rectly from the equipment manufacturers or from the research litera-
ture. However, such estimates, if available, usually reflect the perfor-
mance of the sorting equipment under ideal conditions rather than the
actual MRF operating environment. For this paper, we assume that we
can obtain sample measurements of the composition of the internal
waste streams in the MRF. We rely on the concurrent sampling of
various waste streams within the MRF, rather than attempting to
measure individually the performance of each sorting unit. To do the
latter requires that the normal operations of the MRF be stopped, which
is quite expensive to do. Hence we rely on samples which can obtained
with minimal disruption to the operations. Nevertheless, the quality of
the data can be undermined by the fact that: (i) the samples are taken at
different points in time, and there may be different compositions of the
input waste stream entering the facility at these times; (ii) the mass of
the samples is small compared to the total mass flow of material pro-
cessed in the system; (iii) some of the samples might be incomplete,
with some streams not being measured.

Let T be the number of datasets available, where each data set
corresponds to sample measurements of waste streams at a subset of the
sorting and output units of the MRF done with respect to the same input
stream. We denote the set Zt as the set of units sampled for dataset t. For
each unit j∈ Zt and each material m, we have a measurement Mj t

m
, of the

mass flow that enters the system at unit j, and a measurement Fj t
m
, of the

mass flow through or collected at unit j. For the optimization we require
that at least one of the datasets is complete; i.e. Zt contains measure-
ments for all sorting units and all collection nodes.

We formulate a non-linear optimization model to determine the best
fit that minimizes the squared error, where the error is the difference
between the calculated (by the linear MRF model) and the measured
mass flow rate. We solve the following optimization for each material
type m (where we drop the superscript m for ease of presentation):

∑ ∑ −
∈

β f Fmin ( )
q f t j Z

j t j t j t
, , , ,

2

t (4)

∑ ∑− − = ∀ ∈ ∀
∈ ∈

f f q f q M j Z ts.t. ,j t
i i j T

i t i
T

i i j N
i t i

N
j t t,

( , )
,

( , )
, ,

t t (5)

+ = ∀ ∈q q i S1i
T

i
N (6)

≤ ≤
≤ ≤ ∀ ∈

q
q

0 1;
0 1 i S

i
T

i
N (7)

≥
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f

Z

0

j { , S}, t
j t

t

,

(8)

Nt and Tt are respectively the arc sets for the non-target stream flows
and the target stream flows for each sorting unit in the configuration of
dataset t. The above formulation applies for binary units, i.e., units
having only one target and one non-target stream, but can be easily
extended to units with more than two outgoing streams.

For each material m, the decision variable qiTis the estimate of the
separation parameter for sorting unit i, representing the fraction of the
material that gets sorted into the target stream; = −q q1i

N
i
T is the

fraction sorted into the non-target stream. The decision variable fj,t is
the estimate of the mass flow through unit j for dataset t. The objective
is to minimize the sum of the weighted squared errors of the mass flow
estimates, where βj,t is the weight for the error terms for unit j for da-
taset t. Constraint (5) is a mass flow balance for each unit for each
dataset. Constraints (6) and (7) ensure that the separation parameters
are nonnegative and sum to one. We recommend setting the weight βj,t
to give more importance (higher weight) to material measurements
which are small fractions of the total mass at a measurement node unit,
in order not to disregard them compared to materials measured in
higher quantity (Testa, 2015). Finally, we solve the non-linear optimi-
zation problem with the iteration-point line-search filter method, using
the Ipopt software package (Wächter and Biegler, 2006).

4. Model applications

The inputs for the mathematical model (2) for an MRF are estimates
of the sorting matrix Qm and input vector μ m for each material m. Given
these inputs, we use (3) to predict the stationary flow rates fi

m for each
material at each node in the system configuration. We can use these
flow rates to predict the performance of the MRF in terms of costs and
revenues, and recovery measures.

4.1. Performance evaluation

For a user-defined configuration and set of inputs, the performance
of an MRF can be measured with respect to different metrics: (i) overall
plant efficiency, (ii) material recovery, (iii) material grade, and (iv)
profit. To simplify the presentation, we assume that each material has a
single target output unit, denoted by i m( ) for material m.

(i) The overall plant efficiency ε is a measure of how much of the
incoming materials is correctly sorted, on a mass basis. We define the
overall plant efficiency as:

∑

∑
=ε

f

μ
m

i m
m

m
m

( )

(9)

where μm denotes the total input flow of material m to the MRF, and
fi m

m
( ) is the amount that is correctly sorted.
(ii) Recovery Rm measures the fraction of material m that is collected

at the desired output stream i.

=R
f

μm
i m
m

m

( )

(10)

(iii) Grade measures the concentration of the target material m in
the output stream i:

∑
=

′

′G
f

f
m

i m
m

m
i m
m

( )

( )
(11)

(Testa, 2015; Wolf, 2011) discuss different ways to combine the
different material grades or recoveries into single overall metrics.

(iv) Additionally, we can evaluate a particular MRF configuration in
terms of the profit generated in one time period of operations. For in-
stance, we might model profit as:

∑= + − + + +π V V C C C C( )p i i l p e m (12)

Where Cp is cost of operating personnel, Ceis the energy cost of the
machinery, and Cm is the cost of maintenance and cleaning. The cost of
landfill,Cl, depends on landfill fee cl $/ton, and is given by

∑=
∈

C c fl l m M l
m. The revenue has two components. First is the
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revenue that is proportional to the amount of waste processed:
Vp= pp∑m∈Mμm, where ppis the received processing fee ($/ton). The
second is the revenue from the material collected at each output col-
lection unit i: = ∑ ∈V p fi i m M i

m. Note that the price of output stream i,
depends on whether the output concentration requirements are met. If
not, a penalty function, based on the output grade, is applied to the
nominal selling price. Hence for output stream i m( ), we model the price
as:

=p f G p( )i m m i m( ) ( )
nominal

(13)

where the function =f G( ) 1m if the concentration requirements are
met for material m; if not, then <f G( ) 1m denotes the penalty as a
function of the material grade.

4.2. Uncertainty and sensitivity analyses

The linear model of an MRF allows for rapid evaluation of different
scenarios under the assumption of deterministic inputs and known se-
paration parameters. However, it is often the case that these inputs are
not well specified due to limited data for estimation and due to varia-
tion in the operating conditions. In this section, we discuss how un-
certainty and variation in the parameters affects the performance of the
model.

We have developed an uncertainty analysis to account for possible
daily and seasonal variations in municipal solid waste composition. We
view the inputs μm as being random variables, for which the user can
define the uncertainty distribution for each material component. We
use a Monte Carlo method to sample from the distributions and to de-
termine distributions for performance metrics.

For the separation parameters, we may not have enough experi-
mental data to determine their probability distribution. Rather we may
only be able to estimate a range for each parameter. In this case we will
use a sensitivity analysis (instead of a Monte-Carlo analysis) to gauge
the influence of these parameter values on the MRF performance me-
trics, and to identify which parameter has the largest effect. There exist
diverse computational methods for carrying out sensitivity analysis,
including variance-based methods such as FAST and Sobol’ series
(Saltelli et al., 2010). However, as a preliminary step, which only fo-
cuses on a limited number of parameters, we use a design of experiments
(DOE) method to structure the computational runs with different set-
tings for the uncertain parameters. For the separation parameter of the
target material of each sorting unit, we can find the average effect of
increasing and decreasing its level, with the averaging done over all the
runs of the different possible combinations of the levels of the re-
maining sorting units. We illustrate both the uncertainty and sensitivity
analyses in the case-study in the next section.

5. Case-Study: LPRS in an MRF

5.1. Model formulation

We tested the MRF model with data from a material recovery fa-
cility operated by Ferrovial Services in the Ecoparque de Toledo, Spain.
We modeled the light-packaging recovery section (LPRS) of the facility,
which is the downstream portion of the facility. Much of the organic
waste, paper, cardboard, glass and large objects have been removed by
upstream processes before the waste stream enters the LPRS. The LPRS,
depicted in Fig. 2, collects six valuable output streams (label V), and has
two quality-control units (label QC) and eight mechanical sorting units
(label U): a magnet, six detect-and-route units with NIR sensors, and an
eddy-current separator which separate ferrous, plastics, and aluminum
materials respectively.

The Ferrovial Services team performed characterizations of the
LPRS output streams (V0, V1, V2, V3, V4 and V5 in Fig. 2) as detailed in
(Testa, 2015): the plant was emptied and then run (without operational
QC units) for 30min with a regular quantity of input; samples were
then collected from each output stream and characterized by material
type. Two such measurements of the output streams were conducted in
October 2014. From those datasets, we estimated the separation para-
meters (qi

Tandqi
N in Fig. 2) of units U0 to U7 for each material using the

estimation method in Section 3. These estimated parameters are listed
in Appendix B (Tables B1–B4). When recirculation streams exist (in our
case from units U4 and U7), measurements of those streams are ne-
cessary in addition to the output streams, to form a complete dataset
(dataset 2 in Fig. 2).

In June of 2015, Ferrovial Services characterized samples from both
the input and output of the LPRS. To test our model and estimated
separation parameters, we used the measured LPRS input composition
from June 2015 as model input, and compared the predicted grades of
the output streams to the measured ones from June 2015. As shown in
Fig. 3, the predicted grades are within 4% of the measured ones.

The output streams, except for the plastic mix (PP+Other Plastics)
in stream V4, are baled and sold to recyclers. In the future the plastic
mix will be processed into refuse-derived fuel (RDF) at the MRF. In our
calculations, we assume each output stream selling price, pi m( )

nominal, is
broken down into a market price and a recovery-based subsidy as de-
tailed in Appendix C. We furthermore assume the penalty function of
Eq. (13) to depend on Ecoembes grade requirements (Table C2) and to
be of the following form, based on the U.S. secondary materials’ market
price analysis detailed in (Wolf, 2011):

=
⎧

⎨
⎩

≥
− > >Gf( )

1 if G G
(2G G )/G if G G 0.5

0 otherwise
m

m m

m m m m m

required

reguired required required

(14)

5.2. Evaluation mode

To illustrate the application of our modeling tool, we evaluate the
LPRS configuration using a typical input material composition, shown
in Fig. 4, inferred from sample measurements done in October 2014.
We note that there can be a large variation in the input composition can
exist depending on the demographics of the municipality served by the
MRF as well as the season, as shown by data collected by (Metin et al.,
2003).

Our evaluation enables the determination of the grade and recovery
for each valuable output stream, as shown in Fig. 5. The recovery of
each valuable output material is above 90% except for aluminum; the
grade of each output stream is above 90% except for plastic mix.

While the profit of the LPRS will increase with the recovery rate for
each material, this need not be the case with the material grade. In
particular, once the concentration requirement in Eq. (14) is met, there
is no additional economic gain from improving the grade.

Fig. 3. Comparison of measured and estimated grades of output streams of LPRS with QC
on.
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The evaluation also enables us to analyze the economic performance
of the MRF configuration. Costs Cl, Cp, Ce, Cm are respectively 82, 29, 1
and 7 €/ton (Fig. 5(i)). We observe that the largest cost comes from
landfill fees charged at a rate of 15.49 €/ton. Output-stream revenues
are shown on the secondary axis in Fig. 5(ii). Note that revenue from
processing is significant (26% of revenues) as the MRF facility is re-
munerated at a rate of pp=29.74€/ton of total input. This results in a
net profit of 770 €/h for the input composition used.

We can compare our results to those for an e-waste MRF (Kang and
Schoenung, 2006). We did not include the transportation costs to the
MRF or to landfill. For comparison, transportation accounted for 14% of
the cost at the e-waste MRF. Additionally, their largest cost (30%) came
from CRT recycling as it is illegal to landfill CRT in California. Their
second largest cost was labor (28%), similar to the labor cost fraction in
our case-study. Finally, we note that most of their revenues come from

fees charged to customers (59%), while only 28% comes from metals
recovery, and 7% from plastic recovery (Kang and Schoenung, 2006); in
our case, the processing fee revenue received by the MRF (26%) is
smaller than metals recovery (25%) and plastic recovery (49%) rev-
enues.

The overall sorting performance of this particular LPRS configura-
tion can be summarized by an efficiency (Eq. (9)) of 95.0%. While the
metrics of profit and efficiency may not be useful in isolation, they can
be used for comparing performance of different input compositions or
different configuration designs. For instance, Testa (2015) used a ge-
netic algorithm approach to generate different configurations and select
those with the highest performance metrics. In addition, an MRF
manager can use the evaluation model to test various strategies for
responding to changes in scrap market prices or scrap grade specifica-
tions. These strategies can include adding labor for output quality

Fig. 4. Sample material composition in input stream to LPRS.

Fig. 5. Simulation results using input composition in Fig. 4: (i) breakdown of costs (in black) and revenues (in gray) and (ii) output streams’ grade and recovery rate.

Fig. 6. Sensitivity analysis of varying sorting units' target material(s)
separation efficiency on: (primary axis) net profit π, (secondary axis)
overall plant efficiency ε.
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control or for increased screening of inputs, as well as modifying the
operational controls on sortation equipment so as to improve their se-
paration efficiencies.

5.3. Uncertainty analysis

The historical data for mass entering the LPRS system are from
samples taken at 9 different times throughout the year, hence 9 ob-
servations. Using their minimum, maximum and mean values (Table
D1), we can define an uncertainty distribution for each material input
mass. Due to the limited number of observations, we assume either a
uniform or triangular distribution.

We use the Monte Carlo method to sample from the distributions
and to determine the resulting probability distributions for performance
metrics and each output-stream revenue. This uncertainty analysis
shows a unimodal distribution for profit (mean: 854 €/h, standard
deviation: 77 €/h) and efficiency (mean: 92.6%, standard deviation:
1.2%), and a more uniform-like distribution for some of the output-
streams’ revenues. Histograms and goodness-of-fit tests of these dis-
tributions can be found in the Appendix D.

The uncertainty analysis allows us to generate distributions of per-
formance metrics. For instance, the distribution of projected revenues
can be used by MRF managers for long-term planning such as annual
budgeting purposes while incorporating the effect of variation in waste
composition of the MRF feed throughout a year. Moreover, during the
configuration design phase, one can run several scenarios for each
possible configuration to determine the relative robustness of the con-
figurations to the variability in the input composition. Another possible
usage of uncertainty analysis is to examine the impact of scrap price
variation, as done in Li et al., 2011.

5.4. Sensitivity analysis

We conduct a sensitivity analysis using DOE to investigate the in-
fluence of the separation parameters of the sorting units within the
LPRS system on its performance. We consider 3 levels for the separation
parameters of the target material(s) for each of the 8 sorting units in the
configuration: (i) low at 78%, (ii) medium at 88%, (iii) high at 98%.
These 3 levels reflect the range of variation in measured separation
efficiencies observed during experimental runs on standalone machines
of the magnet, eddy-current and NIR, where operating settings (magnet
belt height, rotor speed and material selectivity respectively) were
changed (Raymond, 2017). With a simple factorial design of the com-
putational experiment, this results in 38= 6561 runs, each with a dif-
ferent combination of target-material separation parameters for the 8
sorting units. Note that a sorting unit can have more than 1 target
material: U1 targets PET and Tetrabrik, while U7 targets PET, Tetra-
brik, HDPE, and plastic mix.

We consider the main effects of these factors on our model outputs,
in particular on the net profit, on the overall plant efficiency, and on
specific revenues from the collected materials. The main effect, i.e. the
first-order influence, of each uncertain parameter on the outputs is
measured using linear regression of the following form, for n uncertain
parameters:

= + + + +ŷ β β x β x β x... n n0 1 1 2 2 (15)

Where ŷ is the predicted output, xi is the level (−1 for lowest, 0 for
medium and+1 for highest efficiency) of the ith uncertain parameter, βi
is the regression coefficient indicating the level of influence of xi.

For the LPRS, we use the input composition in Fig. 4, with n=8.
For profit as the predicted output, β0= 781 €/h, while for efficiency,
β0= 93%. The other coefficients are given in Fig. 6, which shows us the
relative influence of improving the separation efficiency of each sorting

unit on the net profit and overall plant efficiency. The sorting units that
have the highest positive influence are U0, U6, U7 and U1. We can
expect the influence of the units that are upstream in the LPRS con-
figuration (U0, U1) to be more important. The influence of U6 on profit
is due to the high selling price of aluminum. U7, which feeds a re-
circulation loop and has multiple target materials, also has comparable
influence. Additionally, the target materials’ input flow rate has an
impact on the sorting unit’s individual influence on efficiency, while
both the input flow rate and the output streams’ selling price influence
profit. Note that U4 and U5 have a slightly negative influence on profit:
increasing their target material separation efficiency (Tetrabrik and
PP+OtherPlastics respectively) decreases profit slightly. This can be
attributed to: (i) the target materials having a small input flow rate and
low selling price; (ii) the uncollected target materials being recirculated
back to the rest of the configuration to be distributed to the other
output collection units, by an amount small enough to increase their
output mass but still keep the contaminants within the limits of con-
centration requirements. Please refer to Appendix E for more details on
which specific revenue streams contribute to the influence on profit
from the LPRS.

This sensitivity analysis can highlight the most influential para-
meters on the MRF performance. As such, it can be useful to MRF
managers for informing their investment and operating decisions. For
instance, based on the sensitivity analysis for our case-study, the MRF
managers could be advised to concentrate improvement efforts at the
specific sorting units U0 and U7, as this would have the most impact on
the performance metrics. Alternatively, the managers might decide to
invest in more efficient machinery, balancing the projected increase in
profit (from increased material recovery and revenue) with the incurred
capital costs and operating costs.

6. Conclusion and future works

We tested the network flow model on part of an existing MRF
configuration and obtained reasonable predicted performance.
Moreover, we showed possible applications of the model through un-
certainty and sensitivity analyses. The former evaluates the impact from
uncertainty in input material composition on the performance; the
latter shows the sensitivity of the configuration performance to the
separation efficiency of individual sorting units. We found that the
impact of unit separation efficiencies on the plant performance depends
on its configuration design: the marginal benefit of improving the se-
paration efficiency of a unit is greater if it is more upstream of the
valuable output, and if it leads to a recirculation loop. Future work will
look at the impact of recirculation loops and different sequences of
units on plant performance, in terms of the trade-off between recovery
rate and grade. Additionally, we observed that improving grade does
not necessarily translate to maximizing profit, as there is no price
premium from exceeding the grade requirements.

Currently, we assume that the estimated separation efficiencies are
independent of the input composition or flow rate. In future work, one
might examine how the separation parameters depend on both input
composition and rate. Additionally, one might investigate the depen-
dence between different material streams for a given fixed total flow
rate, as the current model assumes independence.
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Appendix A. Manual sorting

A manual station can be a hand-sorting cabin or a quality-control unit. For each type of manual station we assume that each manual sorter has a
recovery efficiency rworker, which is a function of the actual flow and predetermined flow thresholds (Testa, 2015; UNEP, 2005). rworker is thus the

fraction of the target material that is recovered by the sorter. When the station has more than one sorter, the recovery efficiency is a geometric sum of
their individual efficiencies. Hence, the overall recovery efficiency rmanualfor a target material for a unit with K sorters is given by (Testa, 2015):

∑= −
=

r r r(1 )manual
i

K

wor wor
i

0
ker ker

(A.1)

Appendix B. LPRS case-study separation parameter estimates

Tables B1–B4 show the estimated separation parameters of the 8 sorting units in the Light Packaging Recovery System (LPRS). The parameters

Fig. A1. Representation of a HS or QC unit, adapted from
(Testa, 2015).

Table B1
Separation parameters of unit U0 and unit U1.

Magnet − U0

Material End node

V0 U1

Aluminum 0.07% 99.93%
Ferrous 95.10% 4.90%
Film 1.44% 98.56%
Glass 0.22% 99.78%
HDPE 0.05% 99.95%
Inert 0.00% 100.00%
Other 1.47% 98.54%
PET 0.12% 99.88%
PP 0.24% 99.76%
Tetrabrik 0.16% 99.84%
Fines 1.42% 98.58%
Organic 0.02% 99.98%
Other Plastics 0.31% 99.70%
Paper & Cardboard 0.07% 99.93%

NIR - U1

U2 U3

Aluminum 3.93% 96.07%
Ferrous 0.00% 100.00%
Film 9.13% 90.87%
Glass 21.29% 78.71%
HDPE 0.24% 99.76%
Inert 0.58% 99.42%
Other 1.40% 98.60%
PET 86.23% 13.77%
PP 5.74% 94.26%
Tetrabrik 71.94% 28.06%
Fines 1.30% 98.70%
Organic 0.04% 99.96%
Other Plastics 6.95% 93.05%
Paper & Cardboard 4.67% 95.33%
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Table B2
Separation Parameters of units U2 and U3.

NIR − U2

Material End node

U4 V1

Aluminum 95.26% 4.74%
Ferrous 66.25% 33.75%
Film 86.84% 13.16%
Glass 98.97% 1.03%
HDPE 79.34% 20.66%
Inert 99.93% 0.07%
Other 68.25% 31.75%
PET 6.81% 93.19%
PP 88.12% 11.88%
Tetrabrik 96.25% 3.75%
Fines 60.47% 39.53%
Organic 99.95% 0.05%
Other Plastics 89.26% 10.74%
Paper & Cardboard 95.15% 4.85%

NIR − U3

U5 V2

Aluminum 99.93% 0.07%
Ferrous 100.00% 0.00%
Film 93.27% 6.73%
Glass 99.72% 0.28%
HDPE 28.71% 71.29%
Inert 100.00% 0.00%
Other 99.72% 0.28%
PET 99.68% 0.32%
PP 99.59% 0.42%
Tetrabrik 99.73% 0.27%
Fines 99.95% 0.05%
Organic 100.00% 0.00%
Other Plastics 99.07% 0.93%
Paper & Cardboard 99.99% 0.01%

Table B3
Separation parameters of unit U4 and unit U5.

NIR − U4
Material End node

U0 V3

Aluminum 96.79% 3.21%
Ferrous 49.83% 50.17%
Film 95.39% 4.61%
Glass 98.96% 1.04%
HDPE 72.29% 27.71%
Inert 99.93% 0.07%
Other 84.74% 15.26%
PET 99.31% 0.69%
PP 95.44% 4.56%
Tetrabrik 3.71% 96.29%
Fines 88.76% 11.24%
Organic 91.02% 8.98%
Other Plastics 92.30% 7.70%
Paper & Cardboard 85.32% 14.68%

NIR − U5

U6 V4

Aluminum 97.90% 2.10%
Ferrous 99.83% 0.17%
Film 78.21% 21.79%
Glass 78.19% 21.81%
HDPE 99.20% 0.81%
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were estimated from 2 datasets (see Fig. 2) using the model separation method described in Section 3.

Appendix C. Material selling price breakdown

For each valuable material, its selling price can be broken down into a market price and a recovery-based subsidy as shown in Table C1. This
Ecoembes subsidy can be high or low, depending on whether the output stream meets the Spanish recycling industry standards, i.e., whether the
recovered fraction of the total mass of processed valuable material m, is above a predefined Ecoembes threshold value or not. Note that Ecoembes is a
non-profit public limited company in Spain in charge of an integrated management system for waste collection and recovery (Ecoembes, n.d.).
Additionally, Ecoembes imposes grade requirements on the collected output streams as in Table C2.

Table B3 (continued)

NIR − U5

U6 V4

Inert 100.00% 0.00%
Other 96.27% 3.73%
PET 99.51% 0.49%
PP 26.40% 73.60%
Tetrabrik 99.73% 0.27%
Fines 99.77% 0.24%
Organic 99.94% 0.06%
Other Plastics 25.55% 74.45%
Paper & Cardboard 99.68% 0.32%

Table B4
Separation Parameters of units U6 and U7.

NIR − U6

Material End node

U7 V5

Aluminum 15.37% 84.63%
Ferrous 100.00% 0.00%
Film 99.92% 0.08%
Glass 23.85% 76.15%
HDPE 99.74% 0.26%
Inert 100.00% 0.00%
Other 99.58% 0.42%
PET 99.77% 0.23%
PP 99.04% 0.96%
Tetrabrik 95.15% 4.85%
Fines 99.90% 0.11%
Organic 99.95% 0.05%
Other Plastics 99.17% 0.83%
Paper & Cardboard 99.96% 0.04%

NIR − U7

U0 L0

Aluminum 28.98% 71.02%
Ferrous 0.00% 100.00%
Film 38.82% 61.18%
Glass 98.50% 1.50%
HDPE 71.06% 28.94%
Inert 0.00% 100.00%
Other 0.88% 99.12%
PET 91.12% 8.88%
PP 87.66% 12.34%
Tetrabrik 94.98% 5.02%
Fines 0.97% 99.03%
Organic 0.02% 99.98%
Other Plastics 94.14% 5.86%
Paper & Cardboard 3.27% 96.73%
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Appendix D. Monte-Carlo generated distributions

Table D1 shows the input mass fraction variation within data from 9 historical datasets of measurements from the input flow to the Light
Packaging Recovery System (LPRS).

Fig. D1 shows the resulting distributions for profit and overall plant efficiency from the Monte-Carlo analysis with uncertainty variation in the
input parameters in Table D1. Using Chi-square goodness-of-fit test, we accept the null hypothesis that the profit distribution is normal with a p-value

Table C2
Ecoembes concentration requirements for valuable output streams.

Output Materials in Output Concentration

Min Max

Aluminum Aluminum 0.80 1.00
Ferrous 0.00 0.00
HDPE; PET; PP; Film; OtherPlastics;
Tetrabrik; PaperAndCardboard

0.00 0.04

HDPE; PET; PP;Film; OtherPlastics 0.00 0.02
PaperAndCardboard 0.00 0.02
Tetrabrik 0.00 0.02
Fines; Other; Organic; Glass; Inerts 0.00 0.06

Ferrous Ferrous 0.80 1.00

HDPE HDPE 0.85 1.00
PET; PP; OtherPlastics; Film 0.00 0.10
Ferrous; Aluminum 0.00 0.01
PaperAndCardboard; Tetrabrik; Fines;
Organic; Glass; Inerts; Other

0.00 0.05

PP+OtherPlastics PP; OtherPlastics 0.00 1.00

APET PET 0.92 1.00
Ferrous; Aluminum 0.00 0.01
HDPE; PP; OtherPlastics; Film; Fines;
Organic; PaperAndCardboard; Tetrabrik;
Glass; Inerts; Other

0.00 0.07

Tetrabrik Tetrabrik 0.95 1.00
HDPE; PET; Ferrous; Aluminum 0.00 0.03
Fines; Organic; PaperAndCardboard;
OtherPlastics; PP; Film; Glass; Inerts;
Other

0.00 0.02

Paper and Cardboard PaperAndCardboard 0.97 1.00

Table C1
Selling price breakdown of material output streams as of May 2015 with either low or high Ecoembes subsidy.

Valuable Material (Output Stream) Market Price Ecoembes subsidy

Low High

Ferrous (V0) 170 6 9
PET (V1) 170 118 150
HDPE (V2) 360 45 90
Tetrabrik (V3) 7 150 150
Plastic Mix (V4) 0 0 0
Aluminum (V5) 700 9 27

Fig. D1. Sample results’ probability distributions for
the LPRS configuration and uniformly-distributed
input material mass for: (left) net profit π, (right)
overall plant efficiency ε.
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of 0.40 for profit.
Fig. D2 shows resulting distributions in specific revenues from each of the output streams of the LPRS. Specific revenues from V1, V2, V3 and V5

have respectively a mean of 180, 248, 148, 62, 48 €/h, and standard deviation of 24, 48, 38, 17, 13 €/h. Using Chi-square goodness-of-fit test, we
accept the null hypothesis that V1 and V3 specific revenue distribution is uniform with a p-value of 0.74 and 0.16 respectively (p-values for the other
distributions were less than 0.05). Note that there is no revenue from plastic mix (V4), as this output-stream is not yet sold as RDF.

Table D1
Sample input mass fraction variation (LPRS system) used in Monte-Carlo analysis from 9 historical datasets.

Materials Percentage of total input composition by mass

Lower Bound Mean Upper Bound

Aluminum 0.45% 1.09% 1.38%
Ferrous 9.36% 11.36% 15.65%
Film 4.97% 12.24% 24.04%
Fines 0.15% 1.85% 6.48%
Glass 0.00% 0.35% 1.38%
HDPE 2.21% 3.76% 6.28%
Inerts 0.31% 3.72% 12.18%
Organic 3.55% 7.69% 22.02%
Other 21.53% 27.18% 39.31%
OtherPlastics 0.13% 0.63% 1.61%
PaperAndCardboard 6.23% 11.25% 26.59%
PET 6.05% 9.78% 12.07%
PP 2.27% 4.52% 6.95%
Tetrabrik 2.74% 4.58% 7.73%

Fig. D2. Sample results’ probability distributions for the LPRS configuration and uniformly-distributed input material mass for specific revenues from output −streams V0-V5.
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Appendix E. Sensitivity analysis with respect to material revenues

To investigate which revenue streams contribute to the influence on profit from the LPRS, we examine the influence of the sorting units on the
specific revenues from each collection unit (Fig. E1). Looking at the Ferrous (V0) revenue coefficient line chart, we observe that the only major
positive influence on Ferrous revenue is from increasing the separation efficiency in U0. On the other hand, increasing the target material separation
efficiency in U1, U2, and U7 has a positive influence on PET (V1) revenue, while increasing it in U4 actually has a slightly negative influence, due to

contamination inflating V1 revenue, as discussed above. U1 has more influence than U2 because U1 also targets PET and is upstream of U2. It is
interesting to note that U7, even though it is downstream of U2, has a higher influence than U2; this is because U7 determines how much PET gets
recirculated and eventually ends up collected at V1. Similarly for HDPE (V2) revenue, U3 (which sorts for HDPE to V2) and U7 have the most
influence. Again, recall that NIR U7 has HDPE as a target material. As expected for aluminum revenue, U6 (which sorts for aluminum) has the major
positive influence.
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